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A T R A C I N G  LOAD 

IN A N O N L I N E A R  P L A N E  ELASTIC P R O B L E M  

K. F. Chernykh and I. V. Petrenko UDC 539.3 

We consider a plane problem of elasticity theory to determine the features of allowance for a tracing 
load (normal pressure) in a geometrically nonlinear approach. The notation and terminology used are the 
same as in [1-4]. 

1. For a plane homogeneous problem of nonlinear elasticity theory with stresses specified on the contour 
of a region (Fig. 1) the following simple compact relations hold [1-4]: 
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Here {F -1- JE}i are the complex components of the nonsymmetric tensor of nominal stresses; ~" = 
~1 + i~2 and z = Xl + ix2 are the complex coordinates of a material point before and after deformation; 
r162 IOz/07l, A) is the elastic potential; and A is the extension ratio in the direction of the third 

O 
coordinate axis x3. 

Using the basic functions Oz/Or and Oz/07 determined from the boundary problem (1.1)-(1.3), we 
find the rotatic: of the material particle J and the multiplicity of area variations A 
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the complex components of the conditional stress tensor (symmetric Biot tensor) 
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and the complex coordinate of the material point after deformation 

cgz - 

2. To the elastic potential 

,10~12 ~ ~ 2  (2.1) 
= 0" I ~ 1  + 0r 
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corresponds, in the principal coordinate  axes of strain, the following relation between the principal conditional 
o 

stresses ai and the principal extension ratios: 

~1= 0.*{1 + (1/2)[(A1 - 1) + (A2 - 1)]} + (1/2)a[(X1 - 1) - (A2 - 1)], 

~2 = 0.*{1 + (1/2)[(A1 - 1) + (A2 - 1)1 } - (112)a[(X1 - 1) - CA2 - 1)1. 
o O 

When A1 = X2 = 1, i.e., in the  absence of strain, we have 0.1=0.2= 0.*. Thus, 0.* is the preliminary, conditional, 
uniform (in the plane ~:1~2) tensile stress. Expression (2.1) shows that  elastic potential  (2.1) corresponds to 
prestressed (physically) linear material .  Note the relationship between the elastic constants 0.* and a with the 
tradit ional ones: 

E E 
~ .  (2.2) 

0 . * ~  ( l + v ) ( 1 - 2 v ) '  a - *  l + v  

To the given mater ia l  corresponds 

o-~ = ~ ( r  o-~ = ~ ( ~ ) '  z = r162162  + ~ ( ~ ) d r  

In this case, for an infinite region with an opening that  contains the coordinate origin, we have 

r = ~o + r162  r 1 6 2  = 7 + 7 + ' " '  ~(~1 = bo + ~o (~ ) ,  ~ o ( ~ )  = - -  + - -  + - ' - ,  

where 
0 (30 OCO , .  0 0 0  oCO (. X) 

a0 ---- (0.11 -4- 0"22)/20" , b0 -- (0.11 - 0.22 -~2 0.12)/2ot; 
o o o  

and 0.ij are the conditional stresses at infinity. 

3. As a base problem, we consider the s tandard problem of a plane with a linear cut ( - a  ~<~1~ a, 
oCO 0 0 0  0 ~ 

~2 = 0) that  is s tretched in all directions at infinity (Fig. 2), so that  0.11=0.22 -- o ' * ,  o"12 = 0 ---+ a 0  = 1, and 
b0 = 0. In addition, the cut edges are subjected to a uniform normal pressure 0.o. Three  variants should be 
distinguished in this case: 

(1) The tracing load (the normal  pressure a0) traces the normal to the deformed cut  sides. In this case, 
static boundary condition (1.3) takes the form 

o o o 

(0.* + 0.0)q%(<')e i'r + (cz - a0 )~ ( ( ) e  -i't = - ( a *  + 0.0)e i~. (3.1) 

Here 0.0, entering into the boundary-condi t ion coefficients, is a peculiar parametr ic  load. It is important  [and 
this is a characteristic feature of elastic potential  (2.1)] that  Eq. (3.1) is linear with respect to Goursat-Kolosov 
functions (with substantial nonlineari ty of the general problem). Any method used in the linear theory can 
be applied to this equation. Moreover,  this boundary condition is even simpler than its linear analog. 

Solution of Eq. (3.1) shows that  the  cut becomes a circle with radius 

Ro (1 + a * / a ) a  (3.2) 
R - 1 - 0 . o / a '  R o  - 2 ' 
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which is qualitatively confirmed by experiments with rubber plates. The asymptotic behavior of the stress 
state near the right end of the cut is determined by the quantity 

i,~, $=o ~=o , 2 1 1 -  (aoa)] ' \ ~ '1~=o / ,  

(2) In a geometrically nonlinear approach we also assume that  aoo(~)v,_ _ = - a 0 ,  a~,~(~) = 0, i.e., that 

<r0 is a constant ("dead") load which is normal to the sides of the undeformed cut. Note that such a load is 
realized in a region of weakened bonds (in the formation of so-called tension bars in polymers). In this case, 
boundary condition (1.3) takes the form 

o o o 

, , *~o(Oe ~" + ~'~o((')e -~'~ = -(,, '* + o'o)e% 

The cut becomes a circle with radius 

[ <'(-7)] R =  R0 1 + 9 - ;  , R0=  2 

The asymptotic behavior of the stress state is determined by the quantity 

 ooo : +~ 
v~, ~=0 ; ;  ' t 2  ~ /  " 

This case can be regarded as corresponding to an initially normal load. 
(3) Using the relations of linear theory (taking into account preliminary uniform extension), we obtain 

an expression for the asymptot ic  behavior of the stress state. Thus, for an initially normal load, linear 
theory gives a correct asymptot ic  behavior. Concerning the shape of the deformed cut, the obtained result is 
unsuitable for its description (the horizontal cut becomes vertical with penetration of the sides). This should 
be expected, because linear theory inadequately describes great rotations. 

We take a value of v = 0.3 (which is usual for metals), for which, according to (2.2), a/a* = 1-2v  = 0.4. 

For these elastic constants, Figs. 3 and 4 show curves of R/Ro [see (3.2) and (3.3)] and a ~ l ~ =  0 o  /(~ ~=0 , a ~ 1 7 6  o ) 

versus aoia (curves 1 and 2 correspond to cases 1 and 2). 
Note that  this type of dependence on the normal pressure also holds for the angular points (cuts). 
Thus, using the s tandard problem, we obtained (by linear and geometrical approaches) exact 

expressions for conditional and linear strains. Comparison of the obtained solutions showed a considerable 
difference between the effects of tracing and dead loads on the asymptotic behavior of strains and the shape 
of the deformed contour. The  applicability of the asymptotic behavior of strains in linear theory in the case 
of dead loads was demonstrated.  
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